Impacts of CO₂ concentration and climate change on NPP and NEP by six coupled models

Focusing on:

- What does climate change influence net primary production(NPP), net ecosystem production (NEP)?
- > What does NPP and NEP respond to rising CO_2 ?

Which determines the terrestrial carbon sink or source? (increasing CO₂ or climate change)
 Dr. Jing PENG
 Key Laboratory of Regional
 Climate-Environment Research for
 Temperate East Asia(RCE-TEA), Chinese Academy of Scient

Introduction

- Increasing atmospheric CO₂ concentration is a primary factor in climate system. It can cause significant land-atmosphere carbon exchanges and enhanced the land carbon uptake, in addition to long-term impacts on the terrestrial carbon balance at both regional and global scales by affecting vegetation photosynthesis and water use efficiency (Brodribb et al., 2009; Beer et al., 2010; Cox et al., 2013).
- Climate change can play direct role on the carbon exchange between land and atmosphere through influencing the photosynthesis, respiration, land cover, and fire disturbances (Flannigan et al., 2009; Lawrence and Chase, 2010; Scheller et al., 2012).

Introduction

- Friedlingstein et al. (2006) compared 11 fully coupled climate-carbon cycle models and suggested that none was in agreement on the changes in NPP versus respiration.
- It is difficult to accurately estimate the strength of response of NPP to climate change in northern versus tropical forests and drought effect on NPP in tropics using models (Cramer et al., 2001; Zhao and Running, 2010).

Introduction

The magnitude of the global NPP varies markedly among models

Cramer et al., 1999

(Taylor, et al. 2012)

MODELS

- 1. HadGEM2-ES
- 2. IPSL-CM5A-LR
- 3. CESM1-BGC
- 4. MPI-ESM-LR
- 5. CanESM2
- 6. BCC-CSM1-1

\Box CO₂+Climate

□ CO₂ or Climate

Experiments

Including three experiments:

- A "CO₂" experiment is conducted in which biogeochemistry responds to the increasing CO₂, while the CO₂ radiation is calculated by the pre-industrial CO₂ concentration.
- A "Climate" experiment was implemented in which CO_2 radiation is calculated by increasing atmospheric CO_2 concentration with an increased rate of 1% per year, while biogeochemistry is fixed at the pre-industrial CO_2 level.

The effects of both CO_2 and climate change are included in the results of the "Total" experiment, in which both CO_2 biogeochemistry and radiation respond to the increasing CO_2 concentration.

Methods

NPP=GPP-Ra (1) NEP=NPP-RH (2)

NPP: net primary production;NEP: net ecosystem production;GPP: gross primary production;RH: heterotrophic respirationRa: growth and maintenance respiration

List of 21 regions

Region	Abbreviat
Australia	AUS
Amazon basin	AMZ
southern South	SSA
America	0.4.4
Central America	CAM
western North America	WNA
central North America	CNA
eastern North America	ENA
Alaska	ALA
Greenland	GRL
Mediterranean basin	MED
northern Europe	NEU
western Africa	WAF
eastern Africa	EAF
southern Africa	SAF
Sahara	SAH
southeastern Asia	SEA
eastern Asia	EAS
southern Asia	SAS
central Asia	CAS
Tibet	TIB
northern Asia	NAS

<u>Changes in</u> temperature :

- •Increasing temperature is determined primarily by climate change but not increasing CO₂.
- The averaged temperature is
 presented from
 283K of
 CESM1-BGC to
 285K of
 CanESM2

<u>Changes in</u> precipitation:

Increasing precipitation is determined
primarily by climate change.
There is a large difference in precipitation among models

A large difference in the changes of GPP, NPP and RH ranging from 27PgC/yr in CESM-BGC to 133PgC/yr in MPI-ESM-LR, between 7PgC/yr in CESM-BGC and 94PgC/yr in MPI-ESM-LR, between $6.1Pg_{\odot}$ C/yr in CESM-BGC and 70Pg C/yr in HadGEM2-[±] ES, respectively, resulting from rising atmospheric CO₂ concentration.

RH(heterotrophic respiration)

Changes in regional NPP

Messages from regions...

- Increase of NPP everywhere is observed under rising CO₂ concentration
- The coupled models exhibit large difference in the trends of NPP among regions only considering the effect of climate change.
- Changes in NPP among the six regions due to the combined effect of increasing CO₂ and climate change is similar to the changes due to the single effect by increasing CO_2 Regions: eAtraiguts Basin (AMZ), Southeast Asia (SAS), East Asia (EAS), North Asia (NAS), Tibet (TIB) and Central Asia (CAS)

Changes in regional NEP

Enhanced carbon sink(elevated NEP) is shown among regions by models except for IPSL-CM5A-LR responding to the single effect of increasing CO_2 .

When only climate change was considered, the models showed marked differences with region-to-region variability.

For example, increased carbon loss is shown in Amazon basin, while carbon sink is enhanced in northern Asia.

- Due to the rising CO_2 MPI-ES-LR has the largest increase of NPP (0.16gC/m²/yr²) and CESM-BGC shows the smallest increase by 0.01gC/m²/yr².
- Climate change attributes a decreased trend in NPP for six models.

Spatial distribution of the NPP trend simulated by HadGEM2-ES, IPSL-CM5A-LR, CESM1-BGC, MPI-ESM-LR, CanESM2 and BCC-CSM1-1 accounting for the effect of atmospheric rising CO2 concentration ((a,d,g, j, m, p), the effect of climate change (b, e, k, n, q) and the effect of both rising CO2 concentration and climate change (c, f, l, o,r) , units: gC/m2/yr2 .

Messages from right figure...

- MPI-ESM-LR has a significant increase in NEP by 340.7TgC/yr² (P<0.05). Its increase is 47 times larger than that of CESM-BGC
- Only considering climate change effect, the models show marked difference with regional variability.
 - Spacial pattern due to the combined impact is similar to the spacial pattern caused by the single effect of increasing CO_2 .

			Kesp	onse t	o CO2							Re	espor	ise to	Climat	ie		
	-		(0	.1TgC/y	r 2)						P.F.		(0	.1TgC/y	r2)			
AUS -	183	91	20	728	132	249	234			AUS -	-27	-25	3	-107	-50	-52	-43	
AMZ -	1247	678	92	1053	294	685	675		550 - 7000	AMZ -	-315	-251	-52	-260	-227	-224	-221	550 - 7000
SSA -	402	161	35	361	148	186	216			SSA -	-48	-32	1	-28	-62	-19	-31	1.
CAM -	175	91	13	215	70	118	114		350 - 550	CAM -	-35	-53	-13	-34	-41	-30	-35	350 - 550
WNA -	154	143	10	285	45	116	126	L		WNA -	-7	-13	2	19	-3	7	0	
CNA -	186	161	18	200	86	107	126		150 - 350	CNA -	1	-54	0	-7	-9	-13	-13	150 - 350
ENA -	148	93	16	93	120	85	93			ENA -	4	-9	3	15	-2	-3	1	
ALA -	77	53	1	44	-4	14	31		90 - 120	ALA -	100	12	3	34	22	25	32	90 - 120
GRL -	83	91	4	66	14	34	49			GRL -	90	21	4	36	15	25	32	
MED -	105	137	13	240	91	106	115		60 - 90	MED -	-18	-49	-9	-66	-26	-21	-31	60 - 90
NEU -	143	163	10	129	85	91	104			NEU -	4	10	1	14	23	11	10	
WAF -	491	312	46	578	334	335	349		30 - 60	WAF -	-34	-103	-1	-122	-109	-112	-80	30 - 60
EAF -	427	247	35	626	305	378	336		30 - 00	EAF -	-37	47	10	-42	-35	-78	-22	30 - 00
SAF -	396	213	24	592	237	249	285		0 20	SAF -	-59	-39	-8	-150	-67	-73	-66	0 20
SAH -	0	0	0	19	3	17	7		0 - 30	SAH -	0	0	0	-1	-1	-4	-1	0-30
SEA -	461	330	45	359	322	245	294		F0	SEA -	-88	-74	-3	-44	-70	-62	-57	50 0
EAS -	386	302	53	360	251	276	271		-50 - 0	EAS -	17	-29	11	10	-4	-6	0	-50 - 0
SAS -	202	156	46	325	234	204	195		100 50	SAS -	18	0	-4	-38	-74	-23	-20	100 50
CAS -	100	70	5	223	27	112	90		-10050	CAS -	10	-19	0	-33	-2	-11	-9	-10050
TIB –	109	44	5	122	4	61	58		and the second se	TIB -	65	11	4	22	1	12	19	
NAS -	439	392	28	348	130	217	259		-2000100	NAS -	-257	50	20	127	68	86	101	-2000100
WORLD -	5969	3993	533	6986	2950	3932	4060			WORLD -	-40	-591	-25	-642	-656	-554	-418	-
	Σ	_	Σ		Σ	2	ш				Σ	_	Σ	-	Σ	2	ш	
	IGEI	Sdl	CESI	M	IESI	ğ	A				IGEI	Sdl	ESI	W	IESI	ğ	A	
	ad	China Carlo	0	and the second se	ar						ad		0		ar		- Carlos	

 Each model trend has a fair agreement on sign of increased NPP trend at global scale, considering the effect of rising CO₂ concentration

 The increased trend in NPP simulated by CESM1-BGC is much smaller than values simulated by other models due to considering the limited nitrogen effect.

 Climate change attributes a decreased trend in NPP for six models due to climate change

			Respo	onse t	o CO2						R	espon	se to	Clima	te		
			(0.	.1TgC/y	r2)							(0.	TgC/y	r2)			
AUS -	30	-5	3	433	17	2	80		AUS -	-1	2	-1	-67	-16	-18	-17	
AMZ -	7	50	18	453	34	7	95	475 - 3500	AMZ -	-63	34	-21	-113	-16	-91	-45	475 - 3500
SSA -	20	-10	4	212	19	18	44		SSA -	-18	6	-2	-27	-20	-6	-11	-
CAM -	16	-6	2	125	12	0	25	275 - 475	CAM -	-8	5	-2	-21	-4	-9	-6	275 - 475
WNA -	32	-12	1	186	9	23	40		WNA -	-6	4	0	-4	-8	-6	-3	
CNA -	26	-17	2	133	14	5	27	75 - 275	CNA -	-5	13	-2	-16	-2	-8	-3	75 - 275
ENA -	12	-15	1	41	22	13	12		ENA -	-3	6	-1	0	-8	-6	-2	
ALA -	12	-6	0	17	-3	2	3	45 - 60	ALA -	11	1	0	1	1	4	3	45 - 60
GRL -	11	-14	0	24	3	4	5		GRL -	14	6	0	5	-1	0	4	
MED -	12	-24	1	125	11	21	24	30 - 45	MED -	-6	17	-1	-29	-13	-9	-7	30 - 45
NEU -	21	-24	0	52	11	17	13	00 10	NEU -	-10	8	0	-4	-11	-5	-3	
WAF -	43	4	6	280	38	3	62	15 - 30	WAF -	-7	15	-4	-59	-26	-25	-18	15 - 30
EAF -	33	8	4	262	37	10	59	15 - 50	EAF -	-3	5	-1	-45	-22	-29	-16	10 - 00
SAF -	49	2	2	245	36	12	58	0 - 15	SAF -	-12	7	-2	-73	-15	-13	-18	0 - 15
SAH -	0	0	0	5	0	3	1	0-15	SAH -	0	0	0	0	0	-2	0	0-15
SEA -	10	8	3	192	34	7	42	E0 0	SEA -	-10	18	-4	-25	-20	-20	-10	E0 0
EAS -	27	-35	2	142	39	54	38	-50 - 0	EAS -	-11	19	-4	-1	-22	-14	-5	-50 - 0
SAS -	14	-3	7	130	31	27	34	100 50	SAS -	0	0	-2	-30	-11	-23	-11	100 50
CAS -	15	-5	0	133	5	30	29	-10050	CAS -	0	4	0	-30	-1	-8	-6	-10050
TIB –	14	-5	0	63	1	20	15	and the second	TIB –	8	2	0	1	-2	0	1	
NAS -	67	-69	4	139	35	41	36	-600100	NAS -	11	29	-3	9	-17	0	5	-600100
WORLD -	488	-192	71	3407	412	329	752		WORLD -	-114	211	-60	-527	-243	-290	-170	
	Σ	, ,	Σ	Ē	Σ	8	ц Ш			Σ	-	Σ	Ē	Σ	8	, U	
	dGE	B	CES	Σ	nES	ă	A.			dGE	Bell	CES	Σ	nES	ă	A	

Due to climate change:

 Simulations from models except for IPSL-CM5A-LR reproduce, enhance land loss at global scale

S

- The CESM–BGC shows a more modest negative values of -8.0TgC/yr² in NEP than those simulated by other models.
- Regions except for northern Asia enhanced land loss (decreased.

Comparison of simulated NPP with previous studies

Time	Region	Factors	NPP (PgCyr ⁻¹)	Trends of NPP(PgCyr ⁻²)	Res.		
1830-2100	Global	CO_2	50~100		Cromanat		
		Climate	50~60		2001		
		Total	50~85		a1.,2001		
1980-2002		CO_2		0.24	Diag at al		
		Climate		0.05	2009 Plate al.,		
		Total		0.30	2007		
		CO_2	$20.76 \sim 58.28$	0.05~0.3			
1860-1989		Climate	18.92~31.55	-0.003~-0.07	This study		
		Total	22.37~56.36	0.05~0.28	J		

Estimation of simulated NEP

Time	Region	Factors	NEP	NEP trends	Res.
			PgCy⁻¹	PgCy ⁻²	
1830-2100	Global	CO_2	1.4~8.6		Cramer et al.,2001
		Climate	-0.3~-3.8		
		Total	0.3~6.6		
		CO ₂		0.091	Piao et al.,2009
		Climate		-0.065	
		Total	1.9	0.065	
		Total	-0.3~3.8		Prentice et al., 2001
		Total	1.32~1.8		Sitch et al.,2008
2006-2100		Total	-0.97~2.27		Ahlstr ^{^{··} om et al.,2013}
2008		Total	3.5~5.9	\square	
1860-1989		CO_2	0.59~12.9	0.006~0.13	This study
		Climate	-1.94~-0.21	-0.002~-0.02	
		Total	0.58~12.7	0.006~0.12	

Conclusions

From results...

- Global terrestrial ecosystems act as enhanced carbon sinks (increased NEP), among models except for IPSL-CM5A-LR accompanied with increasing CO₂.
- Our results also show that climate change has already accelerated carbon losses at low and middle latitudes.
- However, northern high-latitudes show signs of strongly accelerated NPP and NEP in response to the single effect of rising CO_2 or climate change, although large differences in magnitudes of the two variables are clear among models.
- To reduce such discrepancies in magnitude at global and regional scales, it is important to accurately quantify the effects of nitrogen limitation on the changes in the terrestrial carbon fluxes.

THANKS